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Recent experiments that probe the effect of alcohol monolayers on the freezing of water are an exam-
ple of well-characterized surface nucleation, where one has control over the instability by systematic sur-
face modification. We present a simple theory of surface-modified, first-order phase transitions and show
how supercooling may in fact be inhibited below a minimal supercooling temperature which is depen-
dent on the macroscopic strength and spatial extent of the surface treatment. The results show that the
temperature range where supercooling is possible can indeed vanish for strong enough surface treat-

ments, in qualitative agreement with the experiments.
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I. INTRODUCTION
A. Overview

Recent experiments [1] use insoluble, well-
characterized, surface-active alcohol monolayers to dis-
rupt the supercooling of water and thus induce ice crystal
formation. This method of ice nucleation is sensitive to
small changes in the properties of the monolayer. These
experiments demonstrate that, in contrast to homogene-
ous nucleation induced by fluctuations [2-5] and hetero-
geneous nucleation by random defects or impurities, sur-
face nucleation by monolayer additives provides sys-
tematic control of the process. Control of the crystalliza-
tion processes by means of surface additives has techno-
logical implications and has been discussed in connection
with cloud seeding. In addition to the importation tech-
nological implications these experiments may have for
the design of new surface-active materials, they raise in-
teresting theoretical questions concerning the effect a
well-characterized and controlled surface can have on the
stability of the bulk [6].

In this work, we present a phenomenological model of
surface-modified, first-order phase transitions and show
how supercooling may in fact be inhibited below a
minimal supercooling temperature, which is dependent
on the strength and spatial extent of the surface treat-
ment. The results show that the temperature range
where supercooling is possible can indeed vanish for
strong enough surface treatments. In the case of uniform
surface modification, presented in Sec. II, we identify a
different order-parameter profile which can be induced by
even small surface modifications. We show that this state
is an intermediate-state (saddle-point) configuration,
which can lead to the formation of the equilibrium phase
at temperatures higher than those required to cause bulk
nucleation.

In the case of surface modification of limited extent,
described in Sec. III, the theory also predicts the surface

*Present address: Department of Physics of Complex Systems,
Weizmann Institute of Science, Rehovot 76100, Israel.

analogy of a critical nucleus size above which supercool-
ing is inhibited. This size is strongly dependent on both
the temperature and the strength of the surface treatment
and can differ in its dependence on the surface tension
and bulk energy from the critical radius in standard nu-
cleation.

B. Experimental motivation

It is a well-known empirical fact that water can be su-
percooled to temperatures as low as —40 to —20°C be-
fore transforming into ice [7]. This is in agreement with
recent theoretical work on the surface freezing of water,
which also indicates that large supercooling should be
possible [8]. However, recent experiments by Gavish
et al. [1] have shown that insoluble, amphiphilic long-
chain alcohols, C,H,,,,OH, arranged in two-
dimensional crystalline monolayers at the surface of wa-
ter droplets, disrupt the supercooling of the droplets and
thus induce ice crystal formation. This is in contrast to
water-soluble alcohols which are effective antifreeze
agents. The crystallization was suggested to be induced
by a structural match between the two-dimensional
monolayer and the attached face of the nucleated ice [1];
a monolayer which was not well matched was a poor ice
nucleator.

The minimum supercooling temperature, or effective
freezing temperature, was varied from the pure-water
value of —20 to nearly 0°C by changing the microscopic
properties of the monolayer. In particular, the effective
freezing temperature was correlated with the number of
carbon atoms along the chain, n, and its parity. For the
odd-numbered chains the freezing temperatures rose
from —11 to 0°C as the chain length increased from
n =17 to 31, while for the even-numbered chains the
freezing temperatures rose for n <22 and then leveled off
at 8°C for n =22-30. Other long-chain materials (acids),
which were not structurally well matched, were used at
reference and were poor ice nucleators.

The extent of surface coverage by the monolayer also
affected the freezing temperatures. The highest effective
freezing temperatures were found for 100% surface cov-
erage. For 75% surface coverage the freezing tempera-
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ture fell by 2°C and for 50% by 8°C, with respect to
100% coverage [1].

Both lattice mismatch and surface coverage are ob-
served to affect the surface nucleation of ice. Hence, it is
not yet clear whether the observed changes of the
effective freezing temperature with the hydrocarbon
chain length are due to either an increased structural
match or an increased strength (i.e., crystallinity) or ex-
tent (i.e., island size) of the domains of ordered alcohols.

C. Physical model

In these experiments, microscopic parameters such as
the molecular chain length, the lattice mismatch, and the
polarity of the molecular head group at the interface,
were controlled chemically. Yet the effects induced mac-
roscopic phase transformations. The theory presented
here suggests that the chemical modifications used exper-
imentally effectively change the coupling between the
monolayer and the liquid and thus change macroscopic
parameters (defined below), such as the strength and the
spatial extent of the ordering of the liquid at the surface.

To analyze the experiments we note that for a macro-
scopic system a single monolayer at the liquid-air inter-
face cannot change the thermodynamic freezing tempera-
ture of the liquid; it can only affect its stability against
nucleation of the solid. The theory presented here con-
siders the stability of the metastable, supercooled state
with a spatially varying, scalar order parameter, which is
nonzero at the surface and decays to zero away from the
surface. In this section we first review the nucleation
theory and point out the importance of intermediate
(saddle-point) states in destabilizing the system, leading
to the equilibrium phase. We then motivate the choice of
the order parameter and incorporate the surface effects.

1. Nucleation theory

The classical theory of nucleation, or the droplet mod-
el, begins by considering the formation by fluctuations of
a droplet of size R of the equilibrium phase embedded in
the supercooled phase. The excess free energy of such a
droplet is:

AF=47TR20—%’1R3A1“, (1.1)

where o is the surface tension and AT is the free-energy
difference, per unit volume, between the metastable and
stable phases. Equation (1.1) implies that a small droplet
will shrink while a large droplet will grow in order to
minimize the free energy. The critical droplet size is ob-
tained by maximizing the free energy (dAF /dR)(R_)=0,
from which

2

3
—‘1’, and AF(R,)=187-2

37 (a2’

R,= (1.2)

The probability that a fluctuation corresponding to the
critical droplet will occur is proportional to
exp[—AF(R_)/kgT] [5].

Nucleation phenomena has been described in a series
of papers by Langer [2—4] in terms of a statistical theory
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of the decay of metastable states which arise in first-order
phase transitions. The dynamic evolution of metastable
states is given by a phenomenological relaxation equation

[5]:

¥ __ oF

ot v’

where W(r,?) is a local, nonconserved order parameter
which is zero in the liquid state and nonzero in the solid
state, and D is a mobility coefficient. F{W¥} is a free-
energy functional which can be modeled quite generally
using the Landau-Ginzburg form

F{¥)= [ dr[f(¥)+1(V¥)] . (1.4)

(1.3)

Typically, the bulk free-energy density f(¥) has a
double-well structure in the coexistence region. The gra-
dient term in Eq. (1.4) accounts for interactions which
tend to favor uniform states; such terms are responsible
for the positive surface tension of finite systems. The
length scale that is characteristic of these gradients is &,
which is of the order of the molecular size (except near
critical points).

The various stable and metastable states are stationary
configurations {¥,} of Eq. (1.3) which minimize F{¥};
they are thus obtained as solutions of the Euler-Lagrange
equation for the minimization of the free energy F:

SF
5V 0. (1.5

The connection between the metastable or supercooled
states and the unstable states that lead to nucleation of
the equilibrium phases [2-5] is that a phase transition
occurs when a configuration {¥} near a metastable (or
supercooled) state {¥,.}] moves to a more stable
minimum of lower free energy. In doing so, the system is
most likely to pass (by means of thermal fluctuations or
other perturbations) through the lowest intervening sad-
dle point {¥} which is a local maximum (in one direction
in phase space) of F that satisfies the Euler-Lagrange
equation. Once {W]} reaches { ¥} it is energetically favor-
able for the system to go “downhill” all the way to the
lower minimum. This can be thought of as a steady-state
probability current flowing across the saddle point.

This saddle point typically describes a configuration
that is almost everywhere similar to the metastable state
except for a localized fluctuation of the condensing phase
and is an extremum of the free-energy functional. One
can expand F{W¥} about {¥}:

F{‘P}=F{W}+%f [ drdrM(r,e)[W(n)—¥(n)]

X[Ww(r')—¥(r')]- - .

There is no linear term since {¥] is a stationary point of
F{W¥}. The operator

8%F

M(et)= | S msu(r)

(1.6)

3
has a negative eigenvalue corresponding to one eigen-
direction along which the free energy diminishes away
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from the saddle point, reflecting the fact that {¥}] is a lo-
cal maximum. This eigenvalue is also the initial growth
rate of the instability at {¥} [3].

The rate of nucleation is obtained from the steady-state
current and is given by [2]

1=1,¢ %87 (1.7

where the activation barrier is given by

AF=F{¥}—F{¥,_.]},

in accordance with the droplet model. I is an inverse
time scale which depends on the negative eigenvalue
[3,4]; the larger the eigenvalue, the faster the rate.

In summary, the transition from a supercooled state to
the equilibrium state is via an intermediate, saddle-point
configuration. Although fluctuations are necessary to
drive the system to the saddle point, the transition from
there to the equilibrium state proceeds in a deterministic
manner with no further need for fluctuations. For bulk
systems, the saddle-point state is a finite-sized droplet of
the equilibrium phase. However, in general, the saddle-
point configuration can be any state of the system which
is reachable from the supercooled state by fluctuations
and which is then unstable to formation of the equilibri-
um phase. Our results, presented below, identify a
different, saddle-point configuration which is not neces-
sarily identical with the equilibrium, ordered phase. This
saddle point is driven by the surface modification and is
unstable towards formation of the equilibrium.

2. Order parameter

We are interested in the propagation of the two-
dimensional translational order of the monolayer into the
liquid and its eventual destabilizing effects on the meta-
stable liquid state. To highlight the conditions under
which the surface treatment can destabilize the liquid, we
consider the “best case” of perfect lattice matching be-
tween the monolayer and the equilibrium solid. This is
consistent with more recent experiments [9] on ice nu-
cleation, which show that two surfaces with identical lat-
tice match, but with different strengths of coupling to the
bulk, have very different nucleation temperatures. Even
in this best case, our results predict how the strength and
extent of the surface ordering can sensitively influence
the  effective  supercooling  temperature. The
simplification gained by focusing on the best case of com-
plete commensurability of the monolayer and the equilib-
rium, bulk crystal is that it is only necessary to treat
theoretically the spatial variation of the (scalar) ampli-
tude of the crystalline order parameter.

The order parameters which differentiate liquids and
solids [10-13] are the fractional density change upon
melting, and ¥, the Fourier coefficients of the density,
where G are the reciprocal-lattice vectors of the crystal-
line solid. Each of the crystallinity order parameters ¥
is nonconserved.

While a complete theory of freezing must focus on
both the density and the crystallinity order parameters,
we assume that the most dominant effect of the surface is
to induce a change in the crystallinity rather than in the
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density. Therefore, the density order parameter is cou-
pled to the boundary only through the crystallinity order
parameters, implying that one can first minimize the free
energy with respect to the density and determine it as a
function of the local crystallinity (a slave variable). The
resulting free energy is then only a function of the crys-
tallinity order parameters, and we consider the simple
case of only one Fourier component. A similar pro-
cedure has been used by Oxtoby and Haymet [12] and
Harrowell and Oxtoby [14] to obtain a local free-energy
density as a function of the crystallinity order parameters
only, for the case where only one Fourier component is
considered. Their free energy, obtained numerically,
shows the important features of a metastable state (fluid),
a lower-energy equilibrium state (crystal), and an energy
barrier. We choose a simple polynomial expansion for
this part of the free energy, augmented by a term which
accounts for the energy costs of gradients of the order pa-
rameter, which is the scalar amplitude of the crystallinity
order parameter I\PG(r)!, where G refers to the two-
dimensional reciprocal-lattice vectors of the ordered
monolayer. We emphasize that our main physical results
are independent of the detailed nature of the functional
form of the free energy and depend only on the important
features noted above.

We therefore consider a free-energy functional F{¥|
as in Eq. (1.4) with a free energy f () per unit volume
which provides a generic model [15] for first-order phase
transitions,

a(T) ., b
_..b_..\l/ —_

2 3
Typically, the bulk free-energy density f(W¥) has a
double-well structure in the coexistence region as indicat-

ed here, and a(T) is a function which in general can be
expanded near the melting temperature as:

Fv)= w3+§—w4. (1.8)

a(M=ay+a (T —T, )+, (1.9)

with ay,a; >0.

Recent studies of semi-infinite systems with first-order
bulk transitions and critical surface phenomena at first-
order bulk transitions have used this model [16-18]. The
model includes all the distinctive features of first-order
transitions: (i) A region of coexistence of two phases in
the interval T'=T,,, where the phase with ¥ =0 is meta-
stable for T <T,, and the phase with ¥ =0 is stable.
When T =T,,, the two phases are equally stable, and the
transition occurs in equilibrium. (ii) A discontinuous
jump of the order parameter at T,,.

3. Surface effects

To incorporate the surface effects in the limit of a
short-range coupling between the surface and the bulk
one can add to the bulk free-energy functional, Eq. (1.4),
a surface free energy f,(¥) where,

f(0)= [ dz8(2)f(W)=£,(¥(z=0)) . (1.10)

V,=W(z =0) is the surface order parameter and a gener-
ic form of the surface free energy f, is
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f(¥)=—a,¥y+(a,/2)¥] with a,,a,>0. The first
term represents interactions that tend to increase the
value of the order parameter at the surface while the
second term results in saturation of the surface order pa-
rameter (i.e., a free-energy penalty if ¥ is too large). In
principle, the equilibrium value of ¥ is found by first cal-
culating the bulk free energy with a fixed value of ¥, as a
boundary condition in ¥(r) and then by minimizing both
the surface and bulk free energies with respect to W
Thus, one can parametrize the surface by the value of the
surface order parameter ¥,

Semi-infinite systems (i.e., systems that are bounded by
their surface) which undergo a first-order bulk transition
have been considered in the past [16-19]. The main
difference between the previous research and the present
work is that previous work considered the coupling be-
tween the surface and the bulk when the bulk is in its
equilibrium stable state and the surface order parameter
is unconstrained. The present work considers the effect
of a constrained surface on the stability of the bulk when
the bulk is metastable rather than stable.

II. INSTABILITIES OF A SURFACE-MODIFIED
SUPERCOOLED PHASE

A. Introduction

Motivated by the experiments, we present a model to
study the effect a well-characterized surface can have on
the stability of a supercooled phase. We first obtain the
time-independent solutions of the Euler-Lagrange equa-
tion in one dimension for a supercooled bulk with the
surface effects of the monolayer entering as a boundary
condition (see the previous section). We show that no
stationary solutions exist if the surface order parameter
becomes too large. Thus, there is a curve in the surface
order-parameter—temperature plane, below which there
are no metastable states consisting of the bulk, super-
cooled phase with the monolayer which modifies the sur-
face order parameter. We then perform a linear stability
analysis to show that one of the profiles has an instability
close to this boundary; we identify the point of instability
as the effective freezing point. This curve thus separates
the regions where the system can and cannot be super-
cooled. For the case of uniform surface modification we
identify a different saddle-point configuration and identi-
fy the relevant fluctuations necessary for nucleation via
this saddle point.

The order parameter can be rescaled to give a free-
energy functional F{¢}, given by Eq. (1.4), where the lo-
cal free energy Eq. (1.8) of a homogeneous system, f (1),
is now dimensionless and is given by [15]:

fW)=ta’ =39’ + iy, @D
with
-2 _al
9 a(T,) * 22

We focus on the temperature range T <T,,, where the
liquid state with =0 is metastable. This corresponds to
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a<Z. The equilibrium value of the order parameter is
given by ¢, =1(1+V'1—4a). Negative values of ¢ are
not considered since they are unphysical. In what fol-
lows, the spatial coordinate r is scaled to the microscopic
length ¢ of this gradient term.

The dynamics of the system is given by Eq. (1.3) in di-
mensionless form:

Y __8F

ot 5y -
Stationary profiles, ¥,(r), i.e., 99 /9t =0, are solutions of
the Euler- Lagrange equation:

(2.3)

SoF

af (¢,(r)) ~o
8¢

s (2.4)

=—V2¢s(r)+
¥

B. One-dimensional stationary profiles

Consider first a one-dimensional geometry, correspond-
ing to a surface chosen to be at z =0, which is completely
covered by a monolayer of infinite extent, L — . The
interactions of the surface liquid layer with the added
monolayer can be complex. In the present model, which
assumes short-ranged interactions between the monolayer
and the liquid, all of these interactions are lumped into
their effect on the value of the order parameter at the sur-
face, Yo=1(z =0). Experimentally, it is observed that
the monolayer is ordered at T > T,,, so we consider the
case of strong coupling between the monolayer and the
fluid surface and take as a boundary condition
(z =0)=1),, where we consider i, as a parameter
that can be determined from the monolayer-fluid
coupling. This choice of the boundary condition can be
justified in the case of strong coupling as follows.
The general boundary condition has the form
—(9¢/0z),-o+(3f, /3¢),_o=0 where f (), Eq. (1.10),
comes from the coupling of the fluid surface to the mono-
layer. When this coupling dominates, the gradient term
can be neglected and the boundary condition is
P(z =0)=1),, where ), is the value of ¥ which minimizes
fs- Thus, the value of ¥, can be varied by changing the
properties of the monolayer. Experimentally, the magni-
tude of ), is related to the amplitude of the Bragg peak
measured in a diffraction experiment, while the coherence
length of a surface domain is related to the width of the
peak. Thus, in principle, the results may be tested by
measuring physical observables.

The Euler-Lagrange equation, Eq. (2.4), is then

2
-1—'2‘b—+a¢—-¢2+¢3=0 2.5
dz
from which we construct a first integral:
2
1 [dy
-2 =0 . 2.6
5 [ dz +f()=0 (2.6)

The integration constant is zero since away from the sur-
face, as z—> o, the system is in the homogeneous,
supercooled-liquid phase, where both ¢¥=0 and
dyY/3z =0.
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In Eq. (2.6) one notices a peculiarity which is due to
the competition between the gradient term and the bulk
free-energy term. No metastable, time-independent solu-
tions exist if ¢ is large enough so that f(1(z)) <0; i.e., for
the metastable state with 3, at z=0 and y—0as z—
to be stationary, f(¥(z)) must be non-negative for all z.

In terms of our model, this means that 9 is limited to
the range 0 <y <1,,, where

Yy =31-V1—3a)

is determined by f(i,,)=0. Thus, in particular, for
T <T,,, Y, must be smaller than the equilibrium value of
the order parameter 1,. When 9,, <y, <, the station-
ary solutions of Eq. (2.4) are unphysical and the system is
no longer metastable, presumably indicating nucleation
of the equilibrium phase since T' < T,,,.

This argument may be reversed and stated in a manner
that is more relevant to the experiment. We introduce
the minimal supercooling temperature T *(,, L), or in di-
mensionless units a* (1, L), which is a function of 3, and
the monolayer size L. If the system is supercooled while
the surface order parameter 1, is held fixed, then there
exists a minimal supercooling temperature,
T*(y, L = )< T,,, below which the system is no longer
stationary. Thus, a necessary condition for stationary
solutions of Eq. (2.4) is:

a>a*(o,L = o)=19p— 145

2.7)

(as shown in Fig. 1), or

T>T*(Yp,L =), (2.8)
where
a
T L =)= T =5 5 o= T,
a
0<Yg<¥p(T,,). (2.9

Integrating Eq. (2.5) we obtain two solutions with
¥(z =0)=1), as boundary condition:

0.2 metastable

0.1
non-stationary
0
0 0.3 0.6
w0

FIG. 1. Critical supercooling temperature a*(1,,L = ) as a
function of surface order parameter 1,. The region close to the
curve (from the metastable region) is where the instability is
most likely to occur.

R. BAR-ZIV AND S. A. SAFRAN 49

+,—z/8
b= = (2.10)
(x~e +1)r—1a
with
1 —
X =—la— 1Yt V2aVy Lla—Ly+1y3] . (2.11)

Yo

The profiles decay over a length scale £=1/Va. In Eq.
(2.11), x incorporates the effects of ,; Y= have different
initial slopes at z =0. The first solution ¥, (z), which de-
creases monotonically from the surface, is obtained by in-
tegrating dy/dz =—V'2f(¢) in Eq. (2.6). The second
solution ¥, (z) has a localized front which extends into
the bulk. It can be constructed by integrating first
dy/dz =+V'2f (¢) out from z =0 and ¥=1, to a point
z=z* at which d¢/dz=0 and ¢ (z*)=4,,; then
dy/dz =—V'2f (¢) is integrated to z— . The front is
centered at large values of z for small values of ¥, When
Yo=vy, ¥ (z2)=1.(z), and the front is at z=0. (See
Fig. 2).

In the next section we demonstrate that ¢, (z) is the
surface-modified metastable configuration, while ¥, (z) is
a higher-free-energy configuration which is an unstable
mode. We show that a localized fluctuation of the unsta-
ble configuration in a background of the metastable
configuration is a different saddle-point configuration
that may lead to nucleation of the equilibrium phase. For
nucleation of the saddle-point configuration with non-
negligible probability, we show that the difference in free
energy between the stable and unstable surface-induced
states, ¥, (z) and ¥;(z) respectively, must be small.
Therefore, the instability associated with this profile is
likely to be relevant only when ¥y—1,,, or alternatively
when T— T*(¢)y, L = ).

C. Linear stability analysis

Equation (2.5) locates local energy minima and saddle-
point configurations; the former are metastable while the
latter have unstable modes which may grow rather than
decay in time and thus lead the transition to the stable

Stationary Profiles

FIG. 2. Stationary profiles obtained with supercooling tem-
perature @=0.1. The dashed and dot-dashed curves are ¥, (2)
and ¥7(z), respectively (¥y<wy). The solid curve is
U (2)=1v7(2) (Yo=1p).
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equilibrium phase. We now consider the stability of the
stationary solutions ¥7(z) to small perturbations £(r,?)
where r=(p,z) and

&(r,t)=y¥(r,t)—¢E(z) .
Letting

E(r, )= TP (2)e 0"

(2.12)

and expanding Eq. (1.3) about 3(z), keeping linear terms
in @,, one finds that Q, is determined by the eigenvalue
equation [13]:

3f(YP(2))

e (2.13)

—¢gt g~ 99 >

where

a)=ﬂq—q2 2.14)
and ¢, , =09¢, /0z.

When (, >0, the perturbation decays in time and the
system is still metastable; but when (2, <0 the perturba-
tion increases with time, signifying an unstable mode. In
addition, the value of the unstable eigenvalue enters into
the nucleation rate as explained above. The boundary
conditions for Eq. (2.13) are taken to be:

$,(z=0)=0, (2.15a)

¢, is bounded as z— o . (2.15b)

The first requirement comes from the fact that in Eq.
(2.12) 9,(z) already obeys the boundary condition set by
the surface treatment, (0)=1,. Physically this assumes
that the surface ordering is constrained and is not
affected by the dynamics of the bulk. The second condi-
tion comes from the fact that one can make an analogy
between unstable modes and bound states of a quantum
particle which is localized in a potential well ¥*(z) near
the surface [4] where

Bf(Yi(z))

3y?

We consider first ¢ =0 and discuss finite wave-vector
fluctuations in the next section. We first look for =0
(marginally stable) modes and then consider o > 0 (stable)
and o <0 (unstable) modes. From Eq. (2.5) one can show
that ¢ =d ), /dz is a solution of the eigenvalue Eq. (2.13)
for w=0. However, since the surface breaks translational
invariance, dy, /dz does not generally satisfy the bound-
ary condition ¢(0)=0. In fact, ¢=d¢,/dz is a zero
eigenmode, consistent with the boundary condition, ex-
actly when y,=1,,, since then the slope at z =0 is exact-
ly zero (see Fig. 2).

The “potentials” of Eq. (2.16) which are associated
with the stationary solutions shown in Fig. 2 are plotted
in Fig. 3. The solution where ¥y=1,,(a) is marginally
stable since its associated potential (the solid curve) has a
marginally bound state. However, the lower potential
which is associated with " is shallower and should have
a bound state, suggesting that ¥ is unstable.

The free surface of a liquid (i.e., without a monolayer)

viz)= a—22¢E(2)+3[¢E)] . (2.16)
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0.08

Potentials

FIG. 3. Potentials corresponding to the stationary profiles
obtained with supercooling temperature a=0.1. The dashed
and dot-dashed curves correspond to ¥; (z) and ¥; (z), respec-
tively (i.e., when ¥,<,). The solid curve corresponds to
¥ (2)=1v] (2) (i.e., when y=1/y).

does not disrupt supercooling since otherwise the liquid
will not supercool. We therefore expect ¥, (z) with
9o=0 (i.e., the monolayer is at most weakly crystalline)
to be stable as this is closest to a free surface
configuration. This can be demonstrated from Eq. (2.13)
since for small values of ¥ we can approximate Eq. (2.13)
by

_¢zz +ap=wé .

The eigenmodes that are consistent with the boundary
conditions are all stable and form a continuous spectrum
with o>a>0: ¢~sin[(w—a)z]. This argument does
not hold for ¥ (z) since it has a front extended into the
bulk where ¢ >>0.

Since ¢=d1i);/dz is a mode with =0 only when
Yo=1,, We expect @ to be small when ¢y=1,,. Regular
perturbation theory is inadequate and we thus use the
method of singular perturbations [20] to calculate w per-
turbatively around o =0.

Analytic expressions for @ and the corresponding
eigenmode are derived in Appendix A. For large z we
find:

¢0(z)~e —z/6+&wz/2 .

(2.17)

For consistency, we require that o <2/£% Of the two
profiles, the monotonic one, ¥, (z), is linearly stable
(w>0), whereas the profile with the extended front,

+(z), is unstable (see Fig. 4). We use these results to
plot in Fig. 5 the initial growth, Eq. (2.12), at short times.
With increasing time, the perturbation grows into the
bulk with ¥ (z) and thus can initiate the phase transi-

tion.
D. Nucleation of a surface modified phase

Although unstable, when <<y, or alternatively
when T >>T*(yy, ), the unstable profile labeled by
¥ (2) is unlikely to be induced by surface modification
since the front is located far from the surface. Moreover,
the unstable state ¥ (z) has a higher free energy than
¥, (z) due to the gradient term in the free energy. There-
fore, the probability that the surface will induce a uni-
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0.04 ——

-0.04

]

0.16 0.17
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FIG. 4. Plot of . The branches of the eigenvalue o vs
corresponding to ¥, (z)(w > 0, stable) and ;" (z)(w <0, unstable)
for =0.1. @=0 when Y,=1,,.

form (i.e., infinite in the X and p directions) configuration
corresponding to ;" is small unless the free-energy
difference between this state and the stable one (i) is
small. When 4y=y)(a), or alternatively when
T=T*(¢y L = ), the front is near the surface, the two
profiles are degenerate. We thus use the relation
Yo=vYy(a), or equivalently the minimal supercooling
temperature T = T*(1,, » ), to estimate the boundary be-
tween metastability and complete instability. Figure 1
shows the dependence of the minimal supercooling tem-
perature T *(¢y, ) [in dimensionless units a*(y,, »)] as
a function of the surface order parameter v,. For a given
temperature, surface perturbations that are too “strong”
can cause nucleation of the unstable configuration.

This state, ¥, is a saddle-point configuration as shown
by the stability analysis above. Once the system is in that
state (e.g., via fluctuations from the stable, surface-
induced state, ¢, ), the order parameter grows in an un-
stable manner and the system approaches the equilibri-
um, ordered phase. Since there is a finite energy
difference Af between the two states for all temperatures
T > T*(4y, 0 ), the nucleation barrier for the uniform
state is proportional to the sample area 4 and thus prohi-
bitively high, i.e., the nucleation rate is:

=1, 48T (2.18)

0.16

0.08

FIG. 5. Plot of the initial growth of instability. The solid
curve is ;5 (z)(¥o <ty ) at @=0.1. The dashed and dot-dashed
curves are ¥(z,t)=1; (z)+¢(z,¢) with t =0 and ¢ =10, respec-
tively.
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Only when T < T*(4),, o) will the one-dimensional state
be obtained. However, at temperatures greater than, but
close to T*(1, ), thermal fluctuations can still nucleate
finite regions of the unstable phase ¥ embedded in a
phase characterized by the stable profile corresponding to
¥, . This is analogous to classical nucleation but instead
of nucleating the equilibrium, ordered phase, the system
nucleates an intermediate, but unstable, phase.

Since the energy difference between the two states ¢,
and ¥, can be much smaller than the energy barriers
separating the stable state 1, and the equilibrium state,
the nucleation rate for the system to create a small region
with a profile given by ¥,” may be orders of magnitude
larger than that of the equilibrium state for any given
temperature. Of course, the rate is highest at the instabil-
ity temperature 7*(y,, ), where the energy difference
between ¥, and ¢, vanishes. However, there can still be
a physically significant rate at somewhat higher tempera-
tures. The nucleation rate is also inversely proportional
to the rate of decay of the unstable, saddle-point state as
described above.

We can estimate the smallest possible size of such a nu-
cleus, by examining the expression for the decay rate of
perturbations of finite wave vector (in the X and y direc-
tions) to the unstable state, l/J:- , as described above. This
decay rate is always negative (unstable) for uniform or
nearly uniform perturbations (i.e., those with small wave
vectors g). However, for some critical value of g the per-
turbations are stable due to the gradient terms in the free
energy. In particular, one writes the decay rate as:

- _ 2
Q,= lo|+g° .

We have derived the expression for o, the ¢ =0 eigenval-
ue, as a function of temperature T and surface order pa-
rameter in Appendix A. For g >>V'[w] there is no nega-
tive eigenvalue and the system is stable. The smallest
wave vector below which the system has an unstable
mode is thus obtained from the dynamics,

Qd:‘/m .

Hence the smallest possible corresponding surface area of
the localized fluctuation is

Ad“"hl' .

'H
For 4 << 4, the system is still stable since {1, >0. For
A > A, such fluctuations are unstable and probable only
if

ﬁéd_<

Once the probability of nucleating a finite region with the
unstable state ¥ is finite, the system will then reach the
equilibrium ordered state, by decay from the intermedi-
ate, unstable, saddle-point configuration.

To estimate the nucleation barrier for fluctuations
from the stable state ¥, to the saddle-point configuration
¢, for a finite region with a critical area 4,, we compare
the free-energy difference between these two states,
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(1] 03 0.6
Yo
FIG. 6. The middle curve is minimal supercooling tempera-
ture a*(ip,L =) for which AfA,;/kpT=0. The curves
above it correspond to Af 4, /kp T~0.01 and 0.05, respectively.

Af.(T,4,), to the energy of making a critical droplet in
homogeneous nucleation which is of order kT,
AF(R,)=%703/(AT), where we estimate
Al=f(¢,(@=0.1)) and o=9,(T,)/&T,). The
lowest curve in Fig. 6 corresponds to the minimal super-
cooling temperature (g =0) for which Af.(T,¢y)=0,
while the curves above correspond to
Af (T, ¢y)/AF(R_)=0.01 and 0.05, respectively, indi-
cating a high probability for unstable finite-wave-vector
fluctuations in the vicinity of the ¢ =0 curve. Thus, the
curve given by Af.(T,v,)=0 is a good guide to the sta-
bility of the system.

1. THREE-DIMENSIONAL
ORDER-PARAMETER PROFILE

A. Introduction

The previous sections treated the case where the entire
surface of the supercooled liquid is modified (e.g., by an
added monolayer of size L — o). In practice, however,
monolayers may be incomplete and consist of domains
which may arise due to various reasons: (i) kinetic effects
even in monolayer regions which are commensurate with
the underlying substrate; (ii) incommensurability effects
which define a domain size over which the overlayer and
substrate are relatively coherent; or (iii) clusters of orient-
ed dipoles of the molecular head groups. It is not clear
yet from experiments which of these different length
scales is mostly relevant to the freezing problem and ex-
actly how the domain size enters the problem.

Here we examine the effects of a single, finite domain
size on the stability of the system. While a coherent
monolayer persisting over the entire surface, inducing an
effective surface order parameter v, leads to an instabili-
ty of the metastable state if > ¢,,(a), or alternatively if
T <T*(p,L =), we expect that a small enough sur-
face domain will not disrupt metastability even if
o> ¥ (a). Thus, partial surface coverage by a finite,
coherent domain should allow supercooling and stabilize
the supercooled liquid with a partially modified surface.
For a given supercooling temperature a and a charac-
teristic surface order parameter v, within the domain, we
calculate a critical surface domain size L, below which
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the system is metastable, but above which there are no
physical stationary solutions, suggesting nucleation of the
equilibrium state. This is a two-dimensional analogue to
homogeneous nucleation where one needs a critical drop-
let size to initiate nucleation. However, we note that in
the present case the surface order parameter may not be
equal to the equilibrium order parameter and may thus
vary in magnitude throughout the domain.

An equivalent formulation is that for a given domain
size L characterized by a surface order parameter 1,
there exists a minimal supercooling temperature
T*(¢y, L), which is dependent on both the extent of the
domain and its ordering; below T*(, L) further super-
cooling is inhibited.

B. Critical domain size

We now estimate heuristically the critical domain size
L, above which the monolayer plus supercooled fluid is
no longer metastable. We assume an approximate form
for the three-dimensional profile within the droplet,
which decays in the z direction with a characteristic
length A and in the lateral (x and y directions) with a
domain size L.

_z_p°

X (3.1)

Y~ oexp

A is a length that will be chosen to minimize the free en-
ergy for a given domain size L. Other functional forms
can also be considered. We note that L is determined by
the response of the (liquid) surface which couples to the
surface modification (monolayer). The monolayer has an
extent L, which depends on the internal interactions
within the monolayer. For the case of strong coupling to
the monolayer, the liquid order parameter at z =0 is con-
strained to have a value which matches the monolayer or-
der parameter over a lateral distance equal to the size of
the monolayer, L =L,,. However, the free energy f, [see
Eq. (1.10)], which arises from the coupling of the liquid
surface to the monolayer, is at its minimum so long as L
is at least equal to L,. Thus, to determine whether
L=L, or L>L, (ie., whether the fluid will spontane-
ously develop a nonzero value of the surface order pa-
rameter over a region which is larger than the monolayer
extent L, ) we have to examine the bulk and gradient
terms in the fluid free energy F. If the free energy of the
fluid is increased by an increase in L, then the system will
only allow L =L, (as imposed by the much stronger sur-
face coupling). When the free energy of the fluid is de-
creased by an increase in L, the system will spontaneous-
ly increase, L > L,,; this leads to an instability which
defines a critical value of L =L_ which represents a max-
imum in F as a function of L.

To determine this maximal value L., we estimate the
surface tension from the one-dimensional problem where
¥, ~ o ~ 5. Thus,

e lde P W
U—fo -a;—]dz“?.

With the approximate profile Eq. (3.1), one can show that
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the free energy of the system is (neglecting numerical fac-
tors)

L’
A

Here f(1y) is an average free-energy density induced by
¥, at the surface. We assume that f(i,) <0 since we
consider nucleation of the equilibrium phase. The first
term is obtained by integrating over the bulk free energy
in Eq. (1.4), the second term comes from the gradient
term in z, and the third term results from integrating over
the gradients in the x, y directions. Using the definition
of the surface tension this free energy is written as

F(A, L)~ f() LA+ 30+

2
F(A,L)~[f’(¢0)L2+a§]x+9LT§ . (3.2)

We now minimize F with respect to A to find
oL’

FoL +0

Inserting this into F (A, L) yields
Foi(LY~{oL%[f($y)L*+0E]}1% . 3.3)

)"rznin = §

Maximizing F_; (L) to find the critical domain size L,
above which the system is unstable, we find

-

_‘f(%)

When considering nucleation in the usual approximation,
the order parameter is constant and equal to the equilib-
rium order parameter (i.e., P,=1,) within the drop (of
linear sizes L and A, as before) and decays over a micro-
scopic length ¢ into the liquid. This implies that
o~yYi/E. Assume

Yo | Yo
Y > + > tanh

Llx§ . (3.4)

P—pol2)
¢

where py(z)=L (1—2z%/A%) and {<<A,L. One can then
show that

) (3.5)

3
F(k,L)~f(¢0)L2k+akL+aLT ,

from which one obtains, by a similar analysis to Eq. (3.3):

L,oc—=2—
|f ()]
Thus, the fact that the order parameter varies within the
droplet induces a dependence of the critical domain size
on the surface tension o and the bulk free energy f (v),

which is different from the usual treatment of nucleation
[Egs. (3.4) and (3.6)].

(3.6)

C. Three-dimensional model

We consider the three-dimensional Euler-Lagrange
equation:
%=—V2¢+a¢—¢2+¢3=0. 3.7
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The order parameter in the z =0 plane is modeled by a
function 4 (x,y) which is approximately 1, and decays to
zero over a length L. The physical situation of interest is
one in which the surface modification is finite but persists
over a length which is much larger than the one-
dimensional decay length: L >>§£. In this limit we expect
that the surface domain induces a decay of the order pa-
rameter which is much slower in the x and y directions
than in the z direction. Effectively, the problem reduces
to be one dimensional.

The crudest approximation is to neglect the derivatives
in x and y and regain the one-dimensional solution with
Y replaced by h(x,y) as surface boundary condition
where h (x,y) =1, over a length L and decays to zero for
x2+y?>>L2 However, this naive approach is limited to
systems where ¥, <,(a), since the one-dimensional
equation has no physical solutions for the local
1!}0 > ‘!p M(a ).

Some insight is gained by noting that terms such as ¢,
scale like —y/L? [21], compared to gradients in the z
direction (which are much larger and scale like ¥ /£?).
“Adding” the terms in ¥,, to the term a indicates that
one can heuristically consider the one-dimensional prob-
lem with a “redefined” temperature parameter given by
B=a+c/L? wherecisa positive constant.

Our goal is to approximate the complete Euler-
Lagrange Eq. (3.7) by a one-dimensional equation of the
form Eq. (2.5) with a replaced by 8. Having done so, we
then use the argument that the local surface order param-
eter must be limited by ¥, <¥,(B), to find a minimum
value of 3 that is allowed, B,. The fact that the super-
cooling temperature a is now coupled to the domain size
L by B=a+c/L? enables us to obtain a domain size L
above which no physical solutions exist in a quasi-one-
dimensional equation. We identify this size as the critical
size L., given as a function of local surface order parame-
ter and supercooling temperature a. Since B> a we have
U (B)> ¢y () [see Eq. (2.7)] and this restricts the sur-
face order parameter to the range ¥, (a) <t < ¢, (B).

In the following, we show how this idea can be used in
a perturbation calculation of the three-dimensional
profile and L, [or T*(¢y,L)]. We first examine a simple
case where =0 and the solution can be explicitly ob-
tained; we then treat the general case.

D. Three-dimensional profile: small-y approximation

We consider the case where ¥y=0 and show how a
large length scale emerges in the problem [of course,
=0 means that ¢ <¥,,(a) and that the system is stable
for all domain sizes, so we cannot obtain L, for this case].
We linearize the Euler-Lagrange equation Eq. (3.7):

—V+ayp=0, (3.8)
and Fourier transform in x and y:
Y(x,y,z)= ( 2;)2 f WG,2)e’9Pd %G . (3.9)

To model a domain of extent L with a maximum value of
order parameter at p=0 of 1, we use as a simple exam-
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ple a Gaussian which allows an analytic treatment:
Yx,y,2=0)=h (x,y)=tpge P /2L . (3.10)

(More complex profiles can be treated in a similar
manner.) Then, in the limit L >>§, one finds

¥(x,y,2)= 5 %2
[1+(&°/L*)z/8)]
24 2 2
Xexp | — = — (x "ty )/2L . @D

§  [1+(E2/L%)z/8)]

From Eq. (3.11) we see that there are two length scales in
the z direction: a fast coordinate z, and a slow coordinate
Z=(£2/L%)z. To introduce this new length scale into the
nonlinear problem for arbitrary ¥, we use singular-
perturbation theory in a similar manner to the one-
dimensional stability analysis.

E. Three-dimensional profile: minimal supercooling
temperature

We define the small parameter

=£ 3.12

€=T (3.12)
and an additional slowly varying z coordinate:

z=¢z . (3.13)

We also scale X =ex,y =€y.
The “redefined” temperature B, which differs from «
by a term ~1/L?, is introduced by an ansatz

B=a+g(¢ya)®,

where the coefficient g (1, a) is to be determined self con-
sistently. In Appendix B we derive a perturbation expan-
sion and a set of equations for the solution. We obtain a
zeroth-order solution @ in terms of the one-dimensional
solution:

(3.14)

2By(%,5,7)e %

= = =\ —z/§
(x(X,7,Z)e B+%]2__%ﬁ

Q(%,7,2,2)= ,  (3.15)

where £,=1/VB and Y. is replaced by X(%,7,Z). The
exact form of y(X,y,Z) is derived in Appendix B. The re-
sult is:

X(%,5,2)= Xo
[1+(£p/E)(Z /6)]
Xexp | —F 7 1)/287 4 8Woa)s ’
[1+(£p/E)Z/8)] 2
(3.16)
with

1 J— —
Xo= B30~ VEBY B To T FR] . (17
Equation (3.15) is our approximate three-dimensional
profile (see Fig. 7); it yields a surface order parameter
Py(x,y,z =0) with the property ®y(r=0)=1y,, as in the
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FIG. 7. The shape of ®, from Eq. (3.19) in three dimensions
(with y =0) at L =L, with ¢,=0.66 and a=0.222.

one-dimensional solution Eq. (2.25), vzvhich decays asymp-
totically as ®y(x,y,z=0)~e »/2" In Eq. (3.17) we
have chosen the minus sign of Eq. (2.11) corresponding to
the stable one-dimensional profile. Thus, for a fixed ¥,
and L we find that the profile is related to the one-
dimensional profile, evaluated at an effective temperature
given by B=a+g&%/L% However, this solution is only
physical if x, of Eq. (3.17) is real. This restricts
Dy <Pp(B), or Yo=max[®,] <, (B), where
Yu(B)=2(1—1/1—3pB). This is equivalent to a lower
bound on B for fixed ¥:

B>B.=3bo—1¥h=a* (Yo L =) . (3.18)
The coefficient g (v, a) is given by (Appendix B):
= 6. 2
g(tﬁo,a)—a%fo ®3 ,dz . (3.19)

Here, @, , is evaluated at x =y =z =0 with =1/,,(8,)
and §g =1/ \/B_c One can identify
o=[" 9} .dz (3.20)
as the surface tension.
Equations (3.18) and (3.19), together with the definition
of B [Eq. (3.14)] and the definition a=2a(T)/a(T,,) can
be written as:

T>T*yL), (3.21)
where
T* (g L) =T"*(, 00 ) — [mgﬂ‘ Do|e |
¥ ay | L?
0<9o<¥y(T,) (3.22)

and T*(¢y, L = ) is the one-dimensional critical super-
cooling temperature (see Sec. II B). Thus, we have shown
that a finite size domain implies a minimal supercooling
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temperature, which depends both on the domain size L
and the surface order parameter 1y,. The system consist-
ing of the supercooled fluid plus a monolayer is only
metastable for temperatures greater than T*(yy,L). In
Fig. 8 we plot the minimal supercooling temperature {in
dimensionless units a*(y,, L)=B, —ge’] as a function of
L for different values of v, The system may be super-
cooled above each curve whereas below the curve there
are no stationary solutions within our approximation. As
expected, for a given L, supercooling is inhibited for large
values of the surface order parameter v, For large L,
T*(¥y, L) approaches the one-dimensional minimal su-
percooling temperature T*(Yg,L =) where
Yo=1p(B.). [in dimensionless units a* (o, L = o0 ) =8, ].

Conditions Egs. (3.18)-(3.22) may be stated in another
way: at a certain supercooling temperature a and a given
surface domain characterized by ¥, as the maximum
value of the surface order parameter, we find a critical
domain size L, above which the system has no stationary

solutions:
g

2
= T )
where f(¢o)=1lap—1y{+Lyi<0 is the bulk free-
energy density with ¢y (a) <<y, (T, ). When
Yo=vp(a), f(ify)=0 and L, = o; the one-dimensional
solution is regained. The physics of this relationship, as
well as the connection to the monolayer extent L,,, were
described above in Sec. III B, where an expression very
similar to Eq. (3.23) was derived in a heuristic manner.

(3.23)

IV. CONCLUSIONS

This work was motivated by recent experiments, per-
formed by Gavish et al. [1], that showed that alcohol
monolayers at the air-water interface, which are similar
in structure to crystalline ice, can prevent supercooling of
the water. They showed that the effective freezing points
are correlated with the type of alcohol monolayer and its
specific properties, in a sensitive and reproducible
manner.

The basic idea of the present work is that one can iden-
tify the important macroscopic variables in the problem,

0.15

0.125 r
=]

0.1

50

L

FIG. 8. Critical supercooling temperature a*(w,,L) vs
domain size L for 1,=0.3 (solid curve), ,=0.25 dotted-dashed
curve) and 1,=0.2 (dashed curve).
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which are thus affected by the chemical, microscopic
changes made in the experiments. We have interpreted
these experiments in terms of nucleation theory, focusing
on the nucleation of a stable phase from a supercooled
phase by systematic and controlled surface modification.
This is in contrast to the usual treatments of both homo-
geneous nucleation, which occurs via thermal fluctua-
tions in the bulk, and heterogeneous nucleation, which
takes place at defects or impurities.

We showed how a monolayer can act as a mechanism
for a dynamic instability, presumably leading to nu-
cleation. As a first approach to this problem, we used a
simple Landau-Ginzburg-type model for the phase transi-
tion. This model considers the simplest possible coupling
(i.e., short range) between the surface and the metastable
bulk. In this limit, the monolayer fixes the boundary con-
ditions which are parametrized by (i) the strength of the
surface order parameter ¥ and (ii) the extent of the or-
dering, L.

Analysis of the problem for L-— o yields a one-
dimensional problem and we find two stationary order-
parameter profiles which decay away from the surface
into the bulk. An important result is that the system can-
not be supercooled below a minimal supercooling temper-
ature which is a function of ¥,. This allows one to draw a
boundary separating the regions where the system can
and cannot be supercooled. This boundary is in qualita-
tive agreement with the experimental data. A linear sta-
bility analysis in the vicinity of the boundary shows that
one of the two profiles is a saddle point which may lead
to the decay of the metastable state and hence to nu-
cleation. We identified the fluctuations needed to excite
this saddle point.

We then considered the problem of a finite surface
domain, which necessitates a three-dimensional solution.
We find that a small enough domain will not disrupt the
supercooled state, while a large enough domain, L > L,
with a strong enough surface order parameter, ¥,> v¥,,,
will precipitate the instability. In the limit where the
domain size is larger than the bulk decay length of the
one-dimensional problem, we find an approximate sta-
tionary profile which varies in three dimensions due to
the finite domain. Using this approximate profile one can
show that the system with finite L may be supercooled
below the one-dimensional minimal supercooling temper-
ature, as expected. Furthermore, one can identify a criti-
cal domain size above which supercooling is inhibited,
which is different from the critical droplet size in homo-
geneous nucleation, due to the fact that the order param-
eter varies throughout the surface-induced nucleus.

The experimental work uses local, microscopic changes
in the monolayer to change the stability of the bulk, su-
percooled system. The present theory indicates that
those changes can be lumped into their effects on the
large-scale properties such as 1, and L and that it is pre-
cisely these large-scale properties that determine the
effective supercooling temperature.

Finally, we discuss several remaining open questions.
First, the use of a single scalar order parameter is ap-
propriate to describe only the magnitude of the order pa-
rameter for the freezing transition, but not its phase. To
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include the phase, which accounts for the lattice
mismatch between the monolayer and the ice lattices, one
must consider a complex, multicomponent order parame-
ter. Secondly, this work is limited to short-range interac-
tions between the monolayer and the liquid. It will be in-
teresting to include the effects of long-range forces such
as van der Waals interactions. Also, one should look in
detail at the physical mechanism behind the domains in
the monolayer, perhaps including the effects of dipoles
which act as strong constraints at the water-air interface.
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APPENDIX A: STABILITY ANALYSIS:
SINGULAR-PERTURBATION THEORY

In this Appendix we derive an approximate solution
for the eigenvalue equation of the one-dimensional stabil-
ity problem. We denote the stationary solution
¥} (z)=4; (z) at which ¥y=1,, by 7(z). Similarly, x,,
will denote y* =y~ in Eq. (2.11), corresponding to the
case of ,=1,,. We define a small parameter

S=xT—Xm~ Uy — )2 . (A1)

From Eq. (2.11) one sees that ¢, (z) and ¥;(z) corre-
spond to values of 6 <0 and >0, respectively. When
Yo=1,y, & is small and we can expand w in powers of 8:

0=0,8+w,8*+ - - - (A2)

There is no constant term since w—0 as Xi-—’Xm- To
lowest order in §, the sign of w; determines which of the
two profiles is linearly stable.

We define an additional z coordinate which is slowly
varying:

=&z .

Nj

(A3)

Hence, the derivatives of ¢ have contributions from z:

2
%921 =é,,+28¢,, +82¢ﬁ . (A4)
z
We now write the eigenmode as:
#(2,2)=¢y(2,2)+¢,(2,2)8+¢,(2,2)8% - - - . (AS5)

The eigenvalue equation, Eq. (2.13), can be rewritten as

32f (n(
—¢zz+-———’7—fgnzz’)¢

2 a2 +
ot EL () FS (Y5 (2))
an’ 3P

Expanding ¢I(z) around o=, (or xE=x,) is
equivalent to

6. (A6)
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Y, (z)
ay

¢s(z)zn(z)+(x—xm)[
X=X

Here, x denotes either y* or y~; x* =x" =x,, when
Yo=1v). We thus expand Eq. (A6) in powers of §. Now,

PFWE2) _ 32 f(n(z)) +_8_ |3 |
3y’ an* Nm | O
1 & |34 (q(z) |
- 8+ - . (A7
2 3y, an’? A7

Since all functions are smooth and regular, the expansion
in Eq. (A7) is valid, for all z, provided § is small enough.
Using these definitions we obtain the following equations,
to the two lowest orders of 6:

2f(n
—¢o,t 2 f;nz(z)) $o=0, (A8)

0? )
—¢1,zz+ f;niﬂ ¢1
_ 3% f(n(2)) 3(n(z)
6713 aXm

=2¢0 _+ wy

,2Z

do. (A9)

The boundary conditions take the form

$0(0)=¢,(0)=--- =0,
and
¢, is finite as z— oo .

(A10a)

(A10b)

The main idea is to use the higher-order terms to find the
dependence of ¢, on Z, and the boundary condition to
determine ;.

Equation (A8) is a linear homogeneous equation which
coincides with Eq. (2.13) when ¥y=1,, and ©=0. Its
solution is a linear combination of two independent solu-
tions with two ‘“constants of integration,” A(Z) and
B (%), which may depend on z:

$o(2,2)= A (21, (2)+B(Z),(2) [~ dz

(A2

However, since 7(z)~e ~?/¢ for large z, the second solu-

tion diverges as z— o and we must choose B(Z)=0.

The function 4 (Z) is determined by requiring ¢, to have

no irregular behavior as a result of ¢, as described below.
The general solution to Eq. (A9) is given by [20]:

(A11)

$:(z2)=C(zm,(2)+ [  K(2,2')G(z',2)dz’ (A12)
&)
where [20]
K(z,z')=—17,(zm,,(z')f"i , (A13)
z [n,2))
G (2,2)=24 ,(2,7)
3
+ |, — 2L (n(2)) Bn(z)) bizZ);  (Ald)

a773 aXm

zy is an arbitrary point in the interval [0, ] and we
choose z,= . Putting Eq. (All) into Eq. (A12), with
(3%f /3m%)= —2+ 61, we obtain:
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$:(z,2)=C(@m,(2)— [ " K(z2")

z

dA(z)
2442)
iz

Since z’' >z we consider the asymptotic form of the in-
tegrand as z — o where,

—i’]—~e‘”§ :
X

K(Z,zr)~(e(z’—z)/§_e(z~z’)/§) .

n~e —z/€.

s

To leading order in e ~?/% the asymptotic form of the in-
tegral in Eq. (A15) scales like

_ f w(e(z’—z)/g_e(z~z’)/§)
2z
dA(Z) 1

1
X ZTZ—E—O)IA(Z)E

e /8dz" . (A16)

The first term yields e —z/¢ f :’ dz, which diverges. Hence
]

o+
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[2—61](2’)]6%11— n,(2')VA(Z) |dz’ . (A15)

f
we choose the constant of integration 4 (Z) such that

2942 e 4z)=0, (A17)
4
from which we obtain
A= (A18)

Thus, with Eq. (A18) we find the zeroth-order eigenmode
Eq. (A11):
bo(z,2)=n,(z)e" "

We now find the coefficient @, which determines which
of the two profiles 7 is linearly stable. To this end we
use the boundary condition ¢,(0)=0 in Eq. (A15) which
implies:

. E ' dz a7

lim 7,(z) n,(2") 2 __ 1, Eny,y+ o+ (2—67) ,(2") |dz'=0 . (A19)

z—0 J'z fz [7’7(7)]2 ! ! K aXm K

T

This yields an equation for @, as a function of supercool- (i1) The numerator is
i{xg temperature a. Since nz(O)fO, there are contribu- . . , an(z’) , ’
tions only when the integrand diverges, near z=0. For N —lm}) bz f n,[6m(z )~2]—7L——a [H(z')—H(z)ldz',
small z we can expand 7(z) near z =0 to second order in i ‘ Xm
z, 7(z)~a -%-%bz2 where there is no linear term because or
dn/dz=0 at z=0, so that a=y, and | ro an(z')
b =(d*p/dz?),—,. In Eq. (A19), , is determined by the N=- f (nz»)2[6n(z')—-2]—;L——dz’
ratio of two integrals. We denote 0 Xm
H(z)= [ dz/ni~—1/b%, for z=~0 and

H(z)~(&/2)e /5 for z— 0.
(i) The denominator is:

D =lim bz [0} H () —H(2)]dz' .

Integrating by parts the first term and using the fact that
dH (z')/dz' =1/m> we find

D =lim bzg[ng,[mz')—mz)]]j

+limbz [° |3 H ) —H(@2]—% |dz' .
lim zfz ny[H(z") (z)] > |9z
The first term vanishes. Using lim,  (bzH (z)=—1/b we
are left with:
:l @ 2 ’ 1 *© 2 4 __é !’
D bfo nydz'+ lim bz f MH(z)— 2 |dz' .

The second integral is finite since the diverging terms in
the integrand cancel out due to the fact that
n2H(z')~E/2 for z'— ; s0 as z—0, the second term
does not contribute. Finally, we have for the denomina-
tor:

_1lre 2
D bfo [7,(2))%dz . (A20)

. ac , Mz') i,
+ lim bz fz n2[6n(z )-2]—;7)71!1@ )dz' .

The second term is zero in the limit z—0 since the in-
tegral has no diverging terms. We thus obtain for the
numerator:

2_1_ © 2 _ an(z)
bfo [n,(2) ]} 6n(2) 2]—31—8Xm dz . (A21)
This yields
[ 2P 6n(2)—2)[8n(2) /3 ,, 1dz
CL)]= a (A22)

*© 2
[ n.(27dz

As a check of consistency we replaced ¢(z) by ¢q(z) in
Eq. (2.13), multiplied by ¢(z), and integrated to confirm
numerically that

I b0l —(d%¢0/dz>) + [ (95(2)) /392195 ) dz
[ #ddz

L + (A23)
holds to a very good approximation for Y~ = x,,.
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APPENDIX B: THREE-DIMENSIONAL PROFILE:
SINGULAR-PERTURBATION THEORY

In this Appendix we discuss the solutions of Eq. (3.7).
The partial derivative in Eq. (3.7) has contributions from
zand z:

2
Ck2 =y, +2e%y_+e'y,, .

3z2
Inserting Eqs. (3.13), (3.14) in Eq. (3.7) we obtain
— ¥, — 264, — €'y, — XYy +Yy )
+BY— ¢+ =¢g(dpa)e’ .  (BI)
Next, we expand 3 in powers of e:
Y(x,,2,Z) =Dy +ed,+ XD, + - - . (B2)

Putting this expansion into Eq. (B1) we obtain the follow-
ing equations to lowest orders in €:

=@ ,, +BPy— P+ D=0 ; (B3)
—®, ,, +(B—2P;+3D)P,=0; (B4)
-, ., +(B—20,+393)®,

=@, .+ Py ;5 2P, . +8(Yp,a)P, .  (BS)

These equations must be solved subject to the boundary
conditions:

Doz =0)=h(x,y) ;
®,(z=0)=P,(z=0)="---=0.

(B6a)
(B6b)

For consistency of the perturbation expansion we require
that each successive approximation will have no unbound
terms. We use these equations to solve for both the order
parameter profile and the critical size L,.

Equation (B3) is the quasi-one-dimensional equation

which coincides with the one-dimensional Euler-
J

®)X,7,2,2)= A(%,5,2)®,, +&5 [ K(z,2)

+ L g (g0,

&p

e K
0,z'z %
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Lagrange Eq. (2.5) when €=0._Its solution can be written
as Eq. (3.15), where £g=1/V/B. Equation (B4) is a linear
equation and we can choose @, to equal zero. The exact
form of x(X,y,Z) is determined by requiring that ®, have
no irregular behavior as a result of the zeroth-order solu-
tion @,

The solution to Eq. (BS), which is an ordinary linear
differential equation, is obtained by integrating with
respect to z, holding X, y, and Z fixed. The general solu-
tion is given by [20]:

®,(%,7,2,2)= 4 (%,5,2)®, ,
+ [ K(z2)G(z)dz" . (B7)
zo—oo

We have discarded in Eq. (B7) a solution which is un-
bound (see Appendix A). Asin Appendix A:

¥_dz

K(z,z')=—® , P , , (‘bo,z)z (B8)
and
Gz )=y (2 )+ Py (2)+20, (z)
+g (P, a)Py(z’) . (B9)

The dependence of G and K on X,y,Z has been omitted
for brevity. Using Eq. (3.15) for ®, and the chain rule we
obtain for the derivatives in G:

2

Xi X:_( X
Pozx =6 | 77 (Po,: T Po28p) o, | » (B10)
X X
and a similar expression for q)o,yp' Also,
Xz
Poz= "56%0=" (B11)

Putting this back in Eq. (B7) we have:

2 2

Xsx  Xyp X: X
_X + ;y ¢0,z’+ —X—;_ + _X-; (¢0,2'+¢0,z’z’§[3)
dz' . (B12)

As in Appendix A for the stability analysis we now look at the asymptotic behavior of the integral, for large values of z:

—z/
Dy~e £p.

’

K(z,z')~(e" "% _o'2 7% %)

. . =2/ . . .
Hence, to leading order in e /% the asymptotic form of the integral is

_2X% 1

f w(e(z'—z)/gﬁ__e(x —z’)/§B) -
z & Xs &

The third term in the square brackets of Eq. (B12) is
missing in Eq. (B13) since @, ;. ~ —®, ,-,.£5 asymptotical-
ly. The integral will diverge unless we set:

2

gﬁ)(E—)(ﬁ—)(w—g(n/;o,oz)x=0. (B14)

X X

+ L g (dpa) e %y . (B13)
B

§

|
This equation determines Y(X,y,Z). Equation (B14) is
solved by defining

n=e "y, (B15)

where a =g (,a)§g/2. This yields the differential equa-
tion:
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2 _
7);;"'77;; - Eﬂjnz_o .
The boundary condition at Z=0 is chosen for conveni-
ence to have the form

(B16)

2 2

o M (e _x"ty
7(X,7,0)=x(X,y,0)=Xqexp o2
xi+y?
= cX S

Xo€Xp 252

This particular choice for the boundary condition of y is
made in order to obtain a simple analytic solution of Eq.
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(B14) and will yield only asymptotically
®y(x,y,2=0)~exp[ —(x>+y?)/2L?, to model a surface
monolayer. Equation (B16) is a standard diffusion-type
equation which is solved by Fourier analysis (for any
boundary condition) to yield Egs. (3.16) and (3.17). x, is
chosen such that ®,(0)=1y, in accordance with the one-
dimensional profile Eq. (2.11).

We now determine the function g (yy,a) by using the
boundary condition Eq. (B6a)

Dy(x,y,z2=0)=0.

Putting x(X,y,Z) back into Eq. (B12), one obtains after
some algebra:

J
- = =) - = = LY z’ 2/ 2
O4(X,5,2,2)= A (X,5,2)®q,, +E0o,, [ @ [ @ 7 | 1+ /_g)(f/g)](g‘*@"""'m""')
0,2 B
+g(Ypa) —gl—%—gﬁ@o,,,z, dz' (B17)
B

where @, given by Eq. (3.15), is a function of X,7,2,Z. For 8> ., imposing the boundary condition Eq. (B6a) merely
fixes a boundary condition on the function 4(X,y,Z) at Z=0. The function 4 (x,y,Z) itself is not determined till
higher-order terms are considered. However, when f=8,, ¥p=1vy(B,), and ®,,=0 at r=0. Thus, for =8, the

boundary condition on ®, at r=0 yields the expression:

a2
(®,,) | £

lim fz°° @, f

z—0

where all functions in the integrand are evaluated at
X =y=z=0 and P, is taken with f=p, [Eq. (3.16)].

Equation (B18) is an equation for the coefficient
g (Y, a) which is determined by the ratio of two integrals
[similar to Eqgs. (A20)-(A22)]. As in Appendix A we ex-
pand @, , ~ ¥o+bz?/2 for small z.

(i) The numerator was evaluated in Appendix A and
the result is

=2 [*g2
N—Ez—b‘fo P5,,dz .

(ii) The denominator is:

. ® 1
D =zhi% q)(),z fz §ch>0,z’q>0,z'z’ - E;CDO,Z’(DO

c

X[H(z')—H(z))dz' , (B19)

where H(z)= f dz/ (<I>0,z)2 (see Appendix A). Integrat-

(gﬁc(p(),z’z'+¢0,z’)+g(¢0’a)

*1—¢o—§gc¢o,z'z' (B18)

&p

c

[

ing by parts we obtain:

&p 1
D=limbz| | — o}, — %, @} [[H(z')—H(2)]
-5 1 @9}
—lim b — - g
b fz 2 2 93, a

The first term vanishes in the limits. The second integral
does not diverge for z’'— « since the integrand vanishes.
The contributions come only from the region z'=0. The
result is

2b &g
Finally, we find g (¢,a) as given by Eq. (3.19). Again, im-
plicit in Eq. (3.19) is that ®; is given by Eq. (3.16) with 3,
evaluated at X =y =z =0.
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FIG. 7. The shape of ®, from Eq. (3.19) in three dimensions
(with y =0) at L =L, with ¢,=0.66 and a=0.222.



